The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X^2 X^2 X 1 1 0 X 1 1 X 1 1 X 1 X 1 X
0 X 0 0 0 0 0 X^2 X^2 X X^2+X X X X X^2+X X 0 X^2+X X^2 X X X X 0 X^2+X X X^2+X X^2+X X^2+X 0 X^2+X X X^2 X^2 X^2+X X 0
0 0 X 0 0 X^2 X^2+X X X X X X X^2+X 0 0 0 X^2 X^2 X^2+X X 0 X X X^2+X X X^2 X^2 X^2 0 X^2+X X^2 0 X^2 X^2+X X X^2+X X^2
0 0 0 X 0 X^2+X X^2+X X X^2 X^2+X X^2+X 0 0 X X X^2 X X^2 X^2+X 0 X^2 X X^2 0 0 X^2+X X^2+X X^2+X X X^2 X^2+X X^2+X X^2 X X^2 X^2+X X^2+X
0 0 0 0 X X X^2 X^2+X X X^2+X X^2 X^2 X X^2 X^2+X X X X^2 X^2 X^2+X X^2+X X X^2 X^2 0 X^2+X 0 X X^2 X^2 X^2 X^2 X^2+X X X^2+X X^2 X
generates a code of length 37 over Z2[X]/(X^3) who´s minimum homogenous weight is 32.
Homogenous weight enumerator: w(x)=1x^0+295x^32+156x^34+688x^36+360x^38+393x^40+28x^42+104x^44+22x^48+1x^56
The gray image is a linear code over GF(2) with n=148, k=11 and d=64.
This code was found by Heurico 1.16 in 26.2 seconds.